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Abstract

The paper presents a theoretical study of the interaction between a nonlinear model of a moving vehicle (velocity v) and

a plate elastically mounted in a tunnel. An efficient approach to the solution of the problem of vehicle–slab-

track–tunnel– soil interaction is developed on the basis of a coupling of the Finite Element and Integral Transform methods

(FEM and ITM). According to this approach the tunnel which may have an arbitrary shape and a portion of the

surrounding soil is modelled by Finite Elements while the soil (half-space) is described by the ITM. The corresponding

solution is found using the solutions for the uniform half-space and for the continuum with a cylindrical cavity. To exploit

the invariance of the structure in longitudinal direction x, for this direction additionally to the time–frequency transform

ðt oÞ a space–wavenumber transform ðx kxÞ is used. The case of a half-space is analyzed using a Fourier transform

also in the second horizontal direction ðy kyÞ and an analytical solution for the z-direction on the basis of exponential

functions. In the case of the infinite continuum with the cavity a Fourier series (for the circumferential direction) and a

series of cylindrical functions (for the radial direction) are used for the solution regarding the cross-sectional coordinates

ðy; zÞ. The tunnel structure, that may have an arbitrary shape, and a portion of the surrounding soil will be modelled by

Finite Elements in a ðx kx; t oÞ transformed domain.

In order to observe the boundary conditions at the surface of the half-space as well as at the surface of the cavity, the

superposition of the two solutions has to be performed after an inverse Fourier transform (IFT) in the ðkx; y; z;oÞ-domain.

The solution for the complete system floating slab-track–tunnel–half-space is obtained in the ðkx; y; z;oÞ-domain. Once

the system transfer function Hðo0Þ (with o0 ¼ oþ vkx) for this complete coupled system is found, the displacements of the

plate can be calculated in time domain by the IFT of the product pðo0ÞHðo0Þ, i.e. the convolution of the loading pðtÞ with

the impulse response function hðtÞ, which completely represents the behavior of the coupled system. In the context of the

coupling of systems in a relative movement the problems of differential algebraic equations (DAE) have to be observed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction and overview of existing models

The investigation of the radiation of vibrations in the elastic-isotropic half-space caused by loads moving in
cavities of arbitrary geometry plays an important role for underground railway constructions when designing
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measures on the track, like ballast mats, elastically mounted sleepers, resilient mats or floating slab-tracks
(mass–spring systems). In the case of mass–spring systems especially the interaction between the dynamic
behavior of the elastically mounted plate and its support is of interest.

For the uniform half-space subjected to dynamic surface loadings and for the interaction of the half-space
with structures at its surface or at excavations a large number of solutions has been published. An overview is
given by Grundmann [1]. Some recent publications that deal with the description of the variation of the
stresses across the interface for a beam resting on a half-space shall be added. Postulating compatibility across
the interface, Lombaert et al. [2], Grundmann and Lenz [3], Auersch [4], Franc-ois et al. [5], Andersen and
Jones [6], Karlström and Boström [7] and Steenbergen and Metrikine [8] describe the stress variability with the
aid of local or global shape functions.

For the dynamic investigation of a tunnel different approaches are well established. Along with simple
analytical models, these are the Finite Element Method (FEM), the Thin Layer Method (TLM), the Boundary
Element Method (BEM) and the Integral Transform Method (ITM). Due to the restrictions of the different
methods also hybrid methods have been developed, that combine two of the above-mentioned methods, as e.g.
a coupled FEM–BEM approach. In the following a short overview of those methods in relation to tunnel
dynamics shall be given.

One of the earliest publications presenting an analytical solution for the vibration from underground
railway systems was presented by Krylov [9]. However, the application of this model was restricted to
vibrations in a very low-frequency range (1–4Hz), because the model neglected the influence of the diameter of
the tunnel assuming that it was small compared to the characteristic wave lengths of the vibration spectra. An
approximate solution to the problem taking into account the diameter of the tunnel and thus also valid for
frequencies higher than 4Hz on the basis of the reciprocity principle is given by Lin and Krylov [10]. Rücker
and Said [11] use a two-dimensional (2D) FEM model to solve the tunnel–soil–interaction problem by the use
of local, absorbing boundary conditions in vertical direction and by the aid of the TLM in horizontal
direction. A model presented by Metrikine and Vrouwenvelder [12] consists of two 2D viscoelastic layers
representing the soil below and above the tunnel and two identical beams by which the tunnel is modelled. The
beams are connected by continuously distributed springs. This model can account for the moving loads and
the wave propagation in longitudinal direction, but the wave propagation in the transversal direction cannot
be included. Jones et al. [13,14] developed a coupled 2D FEM–BEM approach to model both a bored, circular
lined and unlined tunnel and a cut-and-cover tunnel of a rectangular cross-section with and without extra
foundation engineering. Hussein and Hunt [15,16] and Forrest and Hunt [17,18] present a half-analytical
model on the basis of the cylinder theory, which is capable of dealing with the three dimensional (3D) dynamic
interaction between track, tunnel and soil as well as with the wave propagation into the surrounding soil. By
the use of this method Hussein has investigated the insertion loss of a floating slab-track for four different
geometric situations of the elastic support [15]. This approach uses the solution for the continuum with a
cylindrical cavity that also is one part of the method shown in this paper. By this approach the soil and the
tunnel are modelled as a viscoelastic full-space with an infinitely long thin cylindrical tunnel shell utilizing the
theory of Flügge [19]. The complete system is also assumed to be invariant in longitudinal direction. The
equilibrium equations are formulated then in the wavenumber–frequency domain. Though such an analytical
model is very efficient with respect to computation time, its applicability is limited. It can be applied only if the
tunnel has a circular cross-section, lies far below the ground surface and the soil is not stratified.

All the above-mentioned models either are 2D and thus not capable of modelling the wave propagation in
the lateral direction or they treat the soil as a full-space and thus cannot take into account the wave reflections
at the surface of the soil or they imply restrictions concerning the geometry of the cross-section of the tunnel
structure and thus cannot account for the influences of different tunnel structures. Andersen and Jones [6]
compare 2D and 3D coupled FEM–BEM models for a cut-and-cover double-track tunnel and a deep single-
track tunnel dug with the New Austrian Tunneling Method (NATM), calculating surface ground vibration up
to 80Hz for loads applied directly to the tunnel invert. Their conclusion is that for absolute vibration
transmission predictions and more accurate estimates of the effects in response due to changes in tunnel
structure and depth 3D models are required.

A general 3D coupled FEM–BEM model has been developed by Andersen and Jones [20], which however is
very costly with respect to the computational effort.
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In order to overcome those computational drawbacks so-called ‘‘2.5D’’ methods have been developed
assuming that the cross-section of the complete system is invariant in longitudinal direction. Discretization
with the combined FEM–BEM method is only required over the cross-section, which can therefore be of
arbitrary geometry, while a Fourier transform is applied longitudinally to describe the problem depending on
discrete wavenumbers in that direction. In Ref. [21] Sheng et al. use this approach to model the vibration from
both a surface railway on layered soil and a bored tunnel. Sheng et al. [22] have presented a prediction model
for soil vibrations due to stationary or moving harmonic loads acting in a circular tunnel with or without
lining in layered ground. Instead of FEM–BEM coupling the authors apply the Discrete Wavenumber-

Fictitious Force Method, utilizing moving Green’s functions for a layered half-space as well as for a radially
layered cylinder of infinite length in order to formulate the boundary integral equation along the tunnel-soil
interface. Though for the boundary integral equation introduced by Luco and de Barros [23] one needs—as
for the conventional BEM—not only the displacements Green’s functions, but also the Green’s functions for
the stresses, by treating the inner domain (a cylinder of infinite length) as a substructure, only the
displacements Green’s functions are needed for the displacements of the soil, the tunnel structure and the
cylinder. Due to the fact that the calculation of the Green’s functions for the layered ground is very costly
the Discrete Wavenumber FEM– BEM Method proposed by Sheng et al. [24] has turned out to be more
efficient.

Within the scope of the EU-project CONVURT (CONtrol of Vibrations from Underground Rail Traffic)
Clouteau et al. [25] and Degrande et al. [26] followed a slightly different approach, assuming periodicity rather
than invariance in the longitudinal direction. The periodicity of the tunnel and the soil is accounted for by the
application of the Floquet transform instead of a Fourier one, which allows to restrict the discretization to only
one single reference cell which represents a structural section of the tunnel. By this approach one can use the
3D BEM-technique for layered soil, because the periodic Green’s kernels exhibit the same singularities as the
3D Green’s functions [27]. This is an advantage compared with the so-called 2.5D FEM–BEMmethods, which
assume a translation invariant model and require the repeated calculation of all singularities after the Fourier
transform along the tunnel axis, except for trains running on the surface of the half-space, where the singular
stress kernels vanish [28]. Theoretical results for a shallow cut-and-cover masonry tunnel embedded in layers
of sand in Paris and for a deep bored tunnel with periodic cast-iron lining in London clay are given in
Ref. [26], while detailed measurements of train, track, tunnel, soil and building vibration for the London site
can be found in Ref. [29].

In Ref. [30] Grundmann and Müller calculated by the approach described in this paper the vibrations of a
tunnel in the homogeneous full-space using three different methods. A thin tunnel shell has been modelled by
the solution for the radially layered full-space with an infinitely long cylindrical cavity as well as by the
application of the theory of Flügge [19] and by the aid of Finite Elements.

The aim of this paper is to develop a mechanical model which is capable of describing the dynamics of an
underground railway tunnel embedded in the half-space. The model can easily account for interior
constructions in order to model a floating slab-track system. So the approach allows to calculate the complete
3D interaction problem of the system vehicle– floating slab-track– tunnel– soil.

In the case of a tunnel embedded in the half-space one has to account for the finite extension of
the tunnel structure in the cross-sectional plane and its infinite extension in the longitudinal direction
as well as for the infinite extensions of the soil in both horizontal and in the vertical direction. Under
those circumstances the direct use of the ITM is impossible, because this method only allows to
take into account the full or layered half-space or the radially layered continuum with a cylindrical
cavity. The description of such a problem can be achieved in an advantageous manner by a coupling
of the FEM with either the BEM [31] or the ITM [32,1,33]. The proposed method describes a synthesis
of a modified FEM description in transformed ðkx;oÞ-domain and the ITM, with FEM to take into account
the finite cross-section of the tunnel structure and with BEM or ITM to consider the infinite extensions of
the soil.

The solution technique is not restricted to cylindrical tunnel shells but applicable to any arbitrary shape of
the tunnel (Fig. 1). Then one has to work with a fictitious internal cylindrical surface Gs of the continuum—
a contour where later the contact of the half-space with cylindrical cavity to the interior FEM mesh has to be
established—and an interior FEM domain, not only for the tunnel itself but also for the soil between the
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Fig. 1. Half-space with tunnel structure.
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tunnel and the surface Gs. In the figure the rectangular tunnel structure and a portion of the adjacent soil are
modelled by Finite Elements in the Fourier transformed ðkx;oÞ-domain.

The infinite domain outside the FEM-regime will be described by a semi-analytical approach using the
equations of the elastic isotropic continuum. The final solution for the half-space with a cylindrical
cavity is constructed by a superposition of a response which starts at the internal cylindrical surface Gs and a
solution which originates at the plane surface of the half-space. For the description of the former serves the
solution for the continuum with a cylindrical cavity in polar coordinates. For the latter serves the solution for
the half-space in cartesian coordinates y and z, caused by stress-states at the upper surface of the half-space. In
the case of the infinite continuum with cylindrical cavity a general form of the solution results if a Fourier
series representation for its variation in the circumferential direction is introduced. This leads to the
description of the behavior in the radial direction by cylinder functions, where their specific form depends on
the dilatational and shear wave velocities, the frequency o, the wavenumber kx and the velocity v of the
moving load. The half-space is described in a Fourier transformed ðkx; ky; z;oÞ-domain. In order to observe
the boundary conditions at the surface of the half-space as well as at the surface of the cavity, the
superposition of the two solutions has to be performed, after an inverse Fourier transform (IFT), in the
ðkx; y; z;oÞ-domain.

The generated solutions are taken as a basis for the investigation of the coupled system tunnel structure–half-

space with cylindrical cavity. In order to keep the computational effort low, it is advantageous to use an
adequately composed form of the Finite Elements, i.e. FE in a transformed domain. This means that
the equations in the FEM domain have to be subjected to a two-fold integral transform, specifically for the
time–frequency ðt oÞ and the space–wavenumber ðx kxÞ transition (x stands for the coordinate in the
longitudinal direction of the tunnel). In the transformed ðkx; y; z;oÞ-domain, as far as the ðy; zÞ-domain is
concerned, one works with usual FEM discretization techniques. The respective stiffness matrix is derived by
the use of the Parseval’s theorem. An advantageous approach specifically for the ITM–FEM coupling in a 2D
problem was proposed in Ref. [32]. It was generalized in the meantime by Grundman and Dinkel [34] for 3D
line structures and by Rastandi [33] for the 3D situation of an excavation at the surface of a half-space.
The above-described approach is illustrated in more detail in Ref. [35].

Once the system transfer function Hðo0Þ (with o0 ¼ oþ vkx) for the system consisting of the plate on an
elastic foundation mounted on the tunnel is found, the displacement of the plate at the point x ¼ vt can be
calculated in the moving coordinate system by the IFT of the product pðo0ÞHðo0Þ, which in the original time
domain corresponds to a convolution of the loading pðtÞ with the impulse response function hðtÞ. The latter is
calculated by the IFT of the system transfer function Hðo0Þ and represents completely the behavior of the
coupled system floating slab track– tunnel– half-space [3]. In the context of the coupling of systems in a relative
movement the problems of differential algebraic equations (DAE) have to be observed [36].
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This paper is structured as follows. In Section 2 the solutions for a uniform half-space and for a continuum
with a cylindrical cavity will be discussed. In Section 3 the solution for the half-space with a cylindrical cavity
is developed and the derivation of a matrix characterizing the force-displacement behavior of this system at the
cylindrical surface Gs by the use of an energy approach is shown. After that in Section 4 the FEM in the
wavenumber/frequency domain is presented. The interaction of a mass–spring system with a nonlinear single-
degree-of-freedom (sdof) system will be described in Section 5. Here special problems that may arise at the
nonlinear interaction and how to overcome them will be discussed. In Section 6 some numerical results for the
case of a nonlinear model of the moving bogie with different wheel out-of-roundnesses at the two wheels are
presented. Finally, in Section 7 some closing statements are given.

2. Basic equations of continuum dynamics and their solutions

The solution for the half-space with cylindrical cavity will be found as a superposition of the solution for a
uniform half-space and the solution for a continuum with a cylindrical cavity. Therefore, in this chapter those
two solutions are described. As shown in Ref. [1] it is favorable to derive both these solutions on the basis of
the ITM.

The governing equation of continuum dynamics is given by the Lamé’s equation of elastodynamics
representing a system of three coupled partial differential equations (PDE)

muij
j
j þ ðlþ mÞujjij � r €ui

¼ 0, (1)

with ji as covariant derivation, ui as the displacements, m and l as Lamé’s constants and r as the density of the
material. In the general case one can approximately account for material damping by considering the Lamé’s
constants m and l as complex quantities

l ¼ l0ð1þ i signðoÞzÞ, (2)

m ¼ m0ð1þ i signðoÞzÞ, (3)

provided that the time and frequency domains are related by the following Fourier transform:

f ðtÞ ¼
1

2p

Z þ1
�1

f̂ ðoÞeiot do. (4)
2.1. Half-space solution

In order to construct the solution for a half-space with a cylindrical cavity as a first step it is customary to
calculate the solution for the full or layered half-space without any cavity. As mentioned before this task shall
be performed with the aid of the ITM.

By the use of the decomposition of Helmholtz into a scalar potential F and a vectorial potential Ck

ui ¼ Fi þCkjj�
ijk, (5)

the system of 3 coupled PDE given by Lamé’s equation of elastodynamics (1) changes into a system of 4 wave
equations that are decoupled in the case the components Ck are given with respect to the cartesian coordinate
system:

Fjjj �
r

lþ 2m
€F ¼ 0, (6)

Cij
j
j �

r
m
€Ci ¼ 0. (7)

The quantities cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
and cs ¼

ffiffiffiffiffiffiffiffi
m=r

p
can be interpreted as velocities of the dilatational and the

shear waves, respectively.
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In the case of cartesian coordinates one can easily see that the matrix of the differential operators that have
to be applied to the vectorial potential Ci in Eq. (7) is singular, so the components of the vectorial potential
are linearly dependent and consequently one component can be arbitrarily chosen. In the following it is
assumed that Cz ¼ 0 (the completeness of this approach has been proved in general by Long [37]).

If one applies a threefold Fourier transform ðx kx; y ky; t oÞ, Eqs. (6) and (7) transform into a
system of 3 decoupled ordinary differential equations (ODE) (the hat ð:̂::Þ indicates quantities in the Fourier
transformed domain).

�k2
x � k2

y þ
o2

c2p

 !
F̂þ

q2F̂
qz2
¼ 0, (8)

�k2
x � k2

y þ
o2

c2s

� �
Ĉi þ

q2Ĉi

qz2
¼ 0; i ¼ x; y. (9)

Now it is an easy task to find the corresponding solution in the Fourier transformed (kx; ky; z;o)-domain,
which is given by an exponential approach with the unknown coefficients Aj and Bij

F̂ ¼ A1e
l1z þ A2e

�l1z, (10)

Ĉi ¼ Bi1e
l2z þ Bi2e

�l2z (11)

with

l21 ¼ k2
x þ k2

y � k2
p, (12)

l22 ¼ k2
x þ k2

y � k2
s (13)

and

kp ¼
o
cp

; ks ¼
o
cs

. (14)

In principal for the case of the infinite half-space the radiation condition of Sommerfeld, that means that
waves can only propagate from and not to the source of excitation, has to be observed. It has been shown in
Ref. [38] (the authors are not aware of any publication in English, in which this information can be found) that
if one only works with oo0, the radiation condition of Sommerfeld will be always—also in the general case
taking into account material damping by the use of complex Lamé’s constants—observed by setting
A1 ¼ Bi1 ¼ 0. In this context one has to work with the positive real or the positive imaginary branch of
the square roots of l21 and l22, depending on whether the radicand is positive or negative, respectively. The
solutions for the case o40 then can be found by taking into consideration symmetry relations in the
(kx;o)-plane: due to the physical nature of the displacements the results in the original domain must be real,
i.e. the results for the positive frequencies are the complex conjugates of the results for the negative frequencies
and thus exploiting this fact they do not need to be calculated. This is very advantageous because the size of
the problem is reduced by half without any further need to distinguish different cases. Finally one arrives at
the solution

fûg ¼ ½L�fCg; fŝg ¼ ½T �fCg (15)

for the displacements

fûgT ¼ fûx ûy ûzg (16)

and the stresses

fŝgT ¼ fŝx ŝy ŝz ŝxy ŝyz ŝzxg. (17)

The matrices ½L� and ½T � are given in Appendix A, fCg contains the unknown coefficients, which can be
evaluated by taking into account the boundary conditions at z ¼ 0 and the continuity conditions, if a layered
half-space is considered.
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As was shown in Refs. [38,39] it is advantageous—if the load moves in x-direction with the
velocity v—to use a coordinate system that moves with the same velocity. In the transformed ðkx;oÞ-domain
then one can apply the results for a locally fixed load, if one substitutes its frequency o simply by
ō ¼ o� vkx.

2.2. Solution for a continuum with a cylindrical cavity

Now the solution for the continuum with cylindrical cavity shall be derived. Starting from
the Lamé’s equation of elastodynamics and after the use of the Helmholtz principle the obtained
wave equations can be transformed into cylinder coordinates x; r and f, so one obtains the differential
equations for the infinite continuum with cylindrical cavity. In order to arrive at decoupled wave
equations starting from Eq. (7), the Christoffel symbols of the respective basis gi have to vanish,
thus the components Ci of the potentials are referred to a cartesian basis (so that Cy and Cz are
used instead of Cr and Cf, although the operators are referred to cylindrical coordinates). Then similarly
as for the case of the uniform half-space the component Cx of the vectorial potential Cg is chosen equal
to zero:

q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qf2
þ

q2

qx2
�

r
lþ 2m

q2

qt2

� �
F ¼ 0, (18)

q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qf2
þ

q2

qx2
�

r
m
q2

qt2

� �
Cg ¼ 0; g ¼ y; z. (19)

As shown in Ref. [40] (the authors are not aware of any publication in English, in which this information can
be found), Eqs. (18) and (19) can be decoupled by introducing new functions M 0

1 and M 0
2 that combine the

potentials Cy and Cz in the following manner:

M 0
1 ¼

1
2
eifðCy � iCzÞ,

M 0
2 ¼

1
2
e�ifðCy þ iCzÞ. (20)

In terms of these functions Eqs. (19) take the following form:

q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qf2
� 2i

q
qf
� 1

� �
þ

q2

qx2
�

r
m
q2

qt2

� �
M 0

1 ¼ 0,

q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qf2
þ 2i

q
qf
� 1

� �
þ

q2

qx2
�

r
m
q2

qt2

� �
M 0

2 ¼ 0. (21)

For the solution of the problem a series expansion of the potentials F;M 0
1 and M 0

2 regarding the
circumferential direction f is used:

Fðx; r;fÞ ¼
Xn¼1

n¼�1

Fðx; r; nÞeinf

M 0
1ðx; r;fÞ ¼

Xn¼1
n¼�1

M 0
1ðx; r; nÞe

inf

M 0
2ðx; r;fÞ ¼

Xn¼1
n¼�1

M 0
2ðx; r; nÞe

inf. (22)
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Together with Eq. (18) and (21) one obtains the following equations for the derivation of the coefficients of the
Fourier series:

q2

qr2
þ

1

r

q
qr
�

n2

r2
þ

q2

qx2
�

1

c2p

q2

qt2

" #
Fðx; r; nÞ ¼ 0,

q2

qr2
þ

1

r

q
qr
�
ðn� 1Þ2

r2
þ

q2

qx2
�

1

c2s

q2

qt2

� �
M 0

1ðx; r; nÞ ¼ 0,

q2

qr2
þ

1

r

q
qr
�
ðnþ 1Þ2

r2
þ

q2

qx2
�

1

c2s

q2

qt2

� �
M 0

2ðx; r; nÞ ¼ 0. ð23Þ

Applying a two-fold Fourier transform with respect to the longitudinal direction and the time
(x kx; t o), one arrives at the following equations for the unknown potentials F̂; M̂

0

1 and M̂
0

2:

q2

qr2
þ

1

r

q
qr
þ �

n2

r2
þ a2k2

x

� �� �
F̂ðkx; r; nÞ ¼ 0,

q2

qr2
þ

1

r

q
qr
þ þ

ðn� 1Þ2

r2
þ b2k2

x

� �� �
M̂
0

1ðkx; r; nÞ ¼ 0,

q2

qr2
þ

1

r

q
qr
þ �

ðnþ 1Þ2

r2
þ b2k2

x

� �� �
M̂
0

2ðkx; r; nÞ ¼ 0 (24)

with

a2 ¼
ðo� vkxÞ

2

c2pk2
x

� 1 and b2 ¼
ðo� vkxÞ

2

c2s k2
x

� 1, (25)

provided that a moving reference frame is used as described in Section 2.1 for a load moving in x-direction
with the velocity v and oscillating with the frequency o.

The general solution can be written in terms of Bessel functions Jn and Neumann functions Y n or of Hankel
functions of 1st and 2nd kind H1

n and H2
n instead.

Taking into account the radiation condition of Sommerfeld at r!1, one has to arrive at a description for
decaying and outgoing waves. Therefore the Bessel functions Jn and the Neumann function Y n have to be
combined in a certain manner. As has been shown in Ref. [35] (the authors are not aware of any publication in
English, in which this information can be found) it is favorable to work with the Hankel functions H1

n;H
2
n

F̂ðr; n; kxÞ ¼ C1nH1
nðakxrÞ þ C4nH2

nðakxrÞ,

M̂
0

1ðr; n; kxÞ ¼ C2nH1
n�1ðbkxrÞ þ C5nH2

n�1ðbkxrÞ,

M̂
0

2ðr; n; kxÞ ¼ C3nH1
nþ1ðbkxrÞ þ C6nH2

nþ1ðbkxrÞ (26)

instead of the Bessel functions Jn and the Neumann functions Y n because then the radiation condition of
Sommerfeld can be fulfilled in any case—also in the general case taking into account material damping by the
use of complex Lamé’s constants—if one chooses as solutions only the Hankel functions of the 1st kind H1

n or
those of the 2nd kind H2

n depending on the sign of the frequency o: if oo0 one has to work only with the
Hankel functions of the 1st kind H1

n, if o40 one has to construct the solution only using the Hankel functions
of the 2nd kind H2

n. In this context one has to work with the positive real or the positive imaginary branch of
the square roots of a2k2

x and b2k2
x, depending on whether the radicand is positive or negative, respectively.
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As example the potential F̂ is given:

F̂ðr; n; kxÞ ¼
C1nH1

nða; kx; rÞ if oo0;

C4nH2
nða; kx; rÞ if o40:

(
(27)

The solutions for the Potentials M̂
0

1 and M̂
0

2 can be found analogously. So by choosing the Hankel functions
H1

n; H2
n instead of the Bessel functions Jn and the Neumann functions Y n as fundamental solution, taking into

account the radiation condition reduces the size of the problem by half.
Once the solutions for F̂, M̂

0

1 and M̂
0

2 are known, one can evaluate—depending on the unknown coefficients
fCng—all displacements and stresses fSg, especially their values at the boundary of the cylindrical cavity, with

fCng ¼ fC1n C2n C3ng
T, (28)

fSg ¼ ur uf ux
srr

2m
sff
2m

sxx

2m
srf

2m
srx

2m
sfx

2m

� �T

(29)

in the form

fSg ¼ ½Hðr; n; kx; c;oÞ�fCng. (30)

The three remaining unknowns now can be easily found by accounting for the boundary conditions at the
surface of the cylindrical cavity at r ¼ a.

For the case of real Lamé’s constants l ¼ l0 and m ¼ m0 according to Eqs. (2) and (3) the following situations
could be distinguished. For a2o0;b2o0 all values of ½H� are given in Ref. [40] for the case of a stationary
moving load. Those values can be easily adapted to the case of a harmonic oscillating moving load by
substituting c by c̄ ¼ v� ðo=kxÞ. For a240 or b240 or for the general case of complex arguments a and b the
matrix ½H� takes a similar form, however on the basis of the Hankel functions of the 1st and 2nd kind H1

n; H2
n.

The values of ½H� for this case can be found in Appendix B.

3. Half-space with a cylindrical cavity

For the geometric situation of a half-space with cylindrical cavity it is not possible to find a closed solution.
As mentioned before, the solution will be constructed as a superposition of the solutions for the uniform half-
space and the continuum with a cylindrical cavity. If a ðx kx; t oÞ transform is used, it is sufficient to
study a plane problem in the (y; z)-plane. Fig. 2 shows that, for given y at the surface of the half-space, one has

c ¼ arctanðy=dÞ and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ d2

q
as respective polar coordinates. In an analogous way for a given r and c

the respective cartesian coordinates can be found.
With the results given in Section 2.1, it is possible to evaluate (for a given loading at the surface of the half-

space) all stresses that act in a uniform half-space, in particular those stresses, that act along the cylindrical
x

y

z

r
d

a

�

�=�+270°

Fig. 2. Coordinate system.
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line r ¼ a shown in Fig. 2. In a similar way starting from an infinite continuum with cylindrical cavity, it is
possible to evaluate all stresses along the horizontal plane z ¼ 0. The stresses on the cylinder should be
expressed then in polar coordinates as srr;srf;srx, whereas the stresses at the plane surface z ¼ 0 will be
expressed using cartesian coordinates as szz; szy; szx. The respective relations are known from elementary
mechanics

fsrr srfg
T ¼ ½T �fsyy szz szyg

T (31)

with

½T � ¼
sin2 f cos2f 2 sinf cosf

� cosf sinf cosf sinf sin2f� cos2f

" #
. (32)

Additionally to the well-known relations at r ¼ a for a plane state of stress one has

srx ¼ �szx coscþ syx sinc (33)

for the stresses in the longitudinal direction x.
Similar relations hold for the ‘‘cartesian’’ stresses at z ¼ 0 depending on the stresses srr;srf;srx.
In order to observe the boundary conditions both at the surface of the cylindrical cavity and at the plane

surface z ¼ 0, unknown stress states according to polar coordinates ½sðhÞn � will be applied at the cylindrical

cavity and unknown stress states according to cartesian coordinates ½sðsÞm � at the surface z ¼ 0. The indices n

and m refer to the number of the Fourier series expansion at the cylindrical surface Gs and to the members of
the numerical Fourier transform at the surface z ¼ 0, respectively.

One possibility to observe those boundary conditions would be an iteration procedure, but the chosen more
elegant approach allows a closed solution: each Fourier series member on the cylindrical surface at r ¼ a

causes stresses at the surface z ¼ 0 and vice versa. Now at the surface of the half-space not only the stresses
applied there ½sðsÞm � but also the stresses ½sðshÞ

mn �, which arise due to the stresses acting at the surface of the
cylindrical cavity, are described by the coefficients of their numerical Fourier integrals. In an analogous
procedure all stresses acting at the cylindrical cavity are expanded into a Fourier series, not only the stresses
due to the stresses applied at the cavity ½sðhÞn � but also the stresses ½sðhsÞ

nm �, which arise at the surface of the
cylindrical cavity due to the stresses acting at the surface of the half-space. If at the surface of the cavity a
stress state ½sðpÞn � due to a given external load exists, one can evaluate all the coefficients of the unknown stress
states taking into consideration the condition, that at the surface of the half-space all stresses have to vanish
while at the surface of the cylindrical cavity the given external load ½sðpÞn � is obtained. This condition must be
fulfilled for all wavenumbers ky of the numerical Fourier integrals at the surface of the half-space as well as for
all Fourier series members at the surface of the cavity. Finally, a closed solution can be found by solving one
compound system of 3mþ 3nþ 4 (in the case the loading is symmetric with respect to the vertical z-axis; the
general case of an arbitrary loading can be obtained by a superposition of the symmetric and the antimetric
load case) linear equations for all stress coefficients ½Cm

ðsÞ� and ½C
n
ðhÞ�:

½sðsÞm � ½s
ðshÞ
mn �

½sðhsÞ
nm � ½s

ðhÞ
n �

" #
½Cm
ðsÞ�

½Cn
ðhÞ�

" #
¼

½0�

½sðpÞn �

" #
. (34)

The accuracy is restricted by the number of series members taken into account.
Once the unknowns are evaluated one can calculate also all displacements, e.g. those on the surface of the

cylindrical cavity Gs. With these quantities a matrix N1 can be derived for each kx;o that describes the
response characteristics on the cylindrical cavity of a half-space by the variation of the work of the stresses
along the cylindrical surface Gs. As mentioned before in order to exploit the invariant cross-section of the
system in the longitudinal direction x, all functions are given by their Fourier transform with respect to their
variability in longitudinal direction. As shown in Ref. [41], in this case the complete volume integral needed to
derive the matrix N1 for the half-space with a cylindrical cavity can be reduced to an integral over the area in
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the (y; z)-plane and an additional integral over the wavenumbers kx by the use of the Parseval’s theorem:Z þ1
�1

duðxÞtðxÞdx ¼

Z þ1
�1

duðxÞ
1

2p

Z þ1
�1

t̂ðkxÞe
ikxx dkx

� �
dx

¼
1

2p

Z þ1
�1

Z þ1
�1

duðxÞeikxx dx

� �
t̂ðkxÞdkx

¼
1

2p

Z þ1
�1

Z þ1
�1

duðxÞe�ið�kxÞx dx

� �
t̂ðkxÞdkx

¼
1

2p

Z þ1
�1

dûð�kxÞt̂ðkxÞdkx ¼
1

2p

Z þ1
�1

dûðkxÞt̂ð�kxÞdkx. ð35Þ

Finally, one obtains the matrix N1 characterizing the force–displacement behavior at the cylindrical surface
Gs of the half-space with cylindrical cavity with respect to the coefficients of the Fourier series representation
of the stresses at the surface Gs:

dU1ðkxÞ ¼

Z
G
duð�kxÞtðkxÞdG

¼

Z
G
dCkð�kxÞ

quð�kxÞ

qCkð�kxÞ

qtðkxÞ

qClðkxÞ
ClðkxÞdG

¼ dCkð�kxÞ

Z
G

ukð�kxÞdtlðkxÞdGClðkxÞ

¼:dCkð�kxÞN
1
kl ClðkxÞ. ð36Þ

4. Finite element description for a tunnel with an arbitrary, non circular cylindrical shape

Between stress and strain the following relation depending on the Lamé’s constants l and m holds:

sij ¼ 2m�ij þ l�m
mgij. (37)

The strains �ij are given with respect to the displacements ui:

�ij ¼
1
2
½uijj þ ujji�; i; j ¼ fx; y; zg. (38)

Applying a Fourier transform with respect to the longitudinal direction ðx kxÞ yields:

ê ¼

ikxû

v̂;y

ŵ;z

û;y þ ikxv̂

v̂;z þ ŵ;y

ikxŵþ û;z

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ Ĝû ¼

ikx 0 0

0
q
qy

0

0 0
q
qz

q
qy

ikx 0

0
q
qz

q
qy

q
qz

0 ikx

2
6666666666666666664

3
7777777777777777775

û

v̂

ŵ

8><
>:

9>=
>;. (39)

In the following, the stiffness matrix is derived by the use of the principle of virtual work. One obtains the
virtual work by the inner stresses dW i, the virtual work of the inertia forces dW T and the virtual work done by
the external forces dW a:

dW i ¼ �

Z
deTrdV ¼ �

Z
deTDedV ,
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dW T ¼ �

Z
duTr€udV ,

dW a ¼

Z
duTpdA. (40)

For a tunnel with an arbitrary, non-circular cross-sectional shape it does not make sense to use polar
coordinates for the description of its stress state. In this case a FE description shall be applied for the tunnel
structure itself and a certain portion of its surrounding. In order to keep the computational effort low, the
FEM calculation will be applied in a (kx; y; z;o)-domain, so the discretization can follow usual 2D
discretization techniques in the (y; z)-plane. The Finite Element calculation must be executed not only for
every frequency o, but also for every wavenumber kx. The respective equations are derived then—as shown in
Ref. [34]—by again applying the Parseval’s theorem, which allows to derive the stiffness matrix of the
respective FEM description in the transformed domain and thus reduces the integral over the volume to a
basic 2D integral over the discretized (y; z)-plane.

Here the Parseval’s theorem is applied to the strains deðxÞ and the stresses rðxÞ in an analogous way as
shown by Eq. (35). Now the virtual work by the inner stresses and the virtual work by the inertia forces can be
formulated by the use of the well known abbreviations B and N:

dW i ¼ �

Z þ1
�1

duTð�kxÞ

Z
z

Z
y

BTð�kxÞDBðkxÞdy

� �
dz uðkxÞ

� �
dkx,

dW T ¼

Z þ1
�1

o2 duTð�kxÞ

Z
z

Z
y

NTrNdy

� �
dz uðkxÞ

� �
dkx. (41)

As was discussed in Ref. [32] (the authors are not aware of any publication in English, in which this
information can be found) it is advantageous (in regard of the numerical performance) to use as FEM
unknowns the coefficients of the Fourier series representation of the solution at the surface of the cylindrical
cavity. This corresponds to a change of basis

fuGg ¼ ½A�fC
h
j g. (42)

Here fuGg are the FEM dofs at the contact points with the half-space. With this relation the virtual
work yields:

dW i ¼ �

Z þ1
�1

dCT
n ð�kxÞA

T
ð�kxÞ

Z
z

Z
y

BTð�kxÞDBðkxÞdy

� �
dzAðkxÞCnðkxÞ

� �
dkx,

dW T ¼

Z þ1
�1

o2 dCT
n ð�kxÞA

T
ð�kxÞ

Z
z

Z
y

NTrNdy

� �
dzAðkxÞCnðkxÞ

� �
dkx. (43)

The dynamic equilibrium is fulfilled if the sum of the virtual work vanishes:

dW ¼ dW i þ dW T þ dW a ¼ 0, (44)

dW ¼

Z þ1
�1

dCT
n ð�kxÞA

T
ð�kxÞ �

Z
z

Z
y

BTð�kxÞDBðkxÞdydz

��

þo2

Z
y

Z
z

NTrNdydz

�
AðkxÞCnðkxÞ þ

Z
s

NT pðkxÞds

�
dkx ¼ 0. ð45Þ

Taking into consideration that the virtual displacement field duT0 ð�kxÞ is arbitrary and non-zero

duTð�kxÞ arbitrary;a0, (46)
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it can be eliminated from the condition. Finally, one obtains the given equilibrium equation:

�

Z
z

Z
y

BTð�kxÞDBðkxÞdy dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~K

þo2

Z
y

Z
z

NTrNdydz|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~M

0
BBB@

1
CCCAu0ðkxÞ þ p0ðkxÞ ¼ 0. (47)

This equation can be written by the use of the given abbreviations as a classical Finite Element equation:

½K� o2M�u0ðkxÞ ¼ p0ðkxÞ, (48)

Kdynu0ðkxÞ ¼ p0ðkxÞ. (49)

If the stiffness matrix of the FEM domain O is partitioned according to

FX

FC

( )
¼

K11 K12

K21 K22

" #
uX

uC

( )
, (50)

where uX are the FEM dofs except those at the contact points, then with the matrix N1 of the soil as given by
Eq. (36) the basic modified FEM equations can be written as

K11 K12A

ATK21 N1 þ ATK22A

" #
uX

Ch
j

( )
¼

FX

0

� �
. (51)

5. Interaction of a mass–spring system with a nonlinear sdof system

Having derived the solution for the system half-space–tunnel– structure, the interaction of a mass–spring
system with a nonlinear sdof system shall be described. As shown in Fig. 3 the elastic support is mounted on
the tunnel shell which itself is coupled to the half-space. Once the displacements of the footings of the support
elements are known in relation to the applied forces at the center of the footings one can derive by inversion a
respective dynamic stiffness kcs, which depends on the wavenumber kx and the frequency o. The term stiffness

was in this context introduced by Dietermann and Metrikine [42] for the case of a half-space. The plate which
is assumed as rigid in transversal direction and thus modelled as a beam, reduces in the transformed domain to
a mass on an elastic support, which has two parallel contributions—the bending stiffness of the plate and an
elastic foundation. The elastic foundation itself is a series system of the elastic support elements kw (with an
inclination g with respect to the vertical axis) and the stiffness of its footing kcs (Fig. 3).

1

k
¼

1

kw

þ
1

kcs

¼
kcs þ kw

kwkcs

. (52)
wu wu

kcs

kw kw
ws ws

y

z

γ

Fig. 3. Tunnel with mass–spring system: real system (a) and idealized system (b).
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The displacement of the beam now can be calculated as the quotient of the load ~pðkx;oÞ and a ‘‘stiffness’’
~Dðkx;oÞ:

~wðkx;oÞ ¼
~pðkx;oÞ

Kðkx;oÞ �mo2
¼
~pðkx;oÞ
~Dðkx;oÞ

. (53)

The ‘‘stiffness’’ ~Dðkx;oÞ is given depending on the frequency o and the wavenumber kx and represents the
complete coupled system beam– tunnel– soil.

~Dðkx;oÞ ¼ k4
xEIpl þ

kwkcs

kw þ kcs

cos2 g�mo2. (54)

Now the derivation of the response of the coupled system due to a moving time depending load pðx; tÞ ¼
PðtÞdðx� vtÞ shall be shown. In the case of the interaction problem under consideration this load is the
interaction force that is given here in the Fourier transformed domain.

~pðkx;oÞ ¼ ~Pðoþ vkxÞ. (55)

After a 2D IFT (kx x;o t) one obtains the displacement of the beam in the moving coordinate
system at x ¼ vt:

wðx ¼ vt; tÞ ¼
1

4p2

Z 1
�1

Z 1
�1

~pðkx;oÞ
~Dðkx;oÞ

eikxvteiot dkx do

¼
1

4p2

Z 1
�1

Z 1
�1

~Pðoþ vkxÞ

~Dðkx;oÞ
eiðoþvkxÞt dkx do. ð56Þ

Introducing the substitution o0 ¼ oþ vkx this equation yields:

wðx ¼ vt; tÞ ¼
1

4p2

Z 1
�1

Z 1
�1

~Pðo0Þ
~Dðkx;o0 � vkxÞ

dkxe
io0t do0. (57)

If one introduces the system transfer function

~Hðo0Þ ¼
1

2p

Z 1
�1

1

~Dðkx;o0 � vkxÞ
dkx, (58)

this expression equals to the IFT of the product of the interaction force ~Pðo0Þ and the system transfer
function ~Hðo0Þ:

wBðtÞ ¼ wðx ¼ vt; tÞ ¼
1

2p

Z 1
�1

ð ~Pðo0Þ ~Hðo0ÞÞeio
0t do0 ¼ IFTð ~Pðo0Þ ~Hðo0ÞÞ. (59)

This product in the transformed domain corresponds to a convolution in the original time domain of the
loading pðtÞ with the impulse response function hðtÞ that can be obtained as the IFT of the system transfer
function.

hðtÞ ¼
1

2p

Z 1
�1

~Hðo0Þeio
0tdo0. (60)
Y
Z

X

k1 v

wB

wR

mW

c1

−Δw

wW

Fig. 4. Modelling the vehicle as sdof system with rail surface unevenness DwðxÞ.
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This impulse response function represents completely the behavior of the coupled system consisting of the
mass–spring system, the tunnel structure and the half-space. With that, the displacements of the plate may be
expressed as a Duhamel integral

wBðtÞ ¼

Z t

0

PðtÞhðt� tÞdt. (61)

Fig. 4 shows the geometrical situation for a sdof system. The interaction between the complete system and the
sdof system is excited by a rail surface unevenness DwðxÞ as shown in the figure. If the response is described in
a moving coordinate system, only the point x̄ ¼ x� vt ¼ 0 has to be considered. The unevenness causes that
the displacement of the footing of the sdof system differs from the displacement of the plate wB.

The equation of motion of the sdof system with a nonlinear restoring force F kðwW � wRÞ due to a nonlinear
characteristic of the spring k1ðwW � wRÞ and a linear damping force F cð _wW � _wRÞ has the following form:

mW €wW þ c1ð _wW � _wRÞ þ k1ðwW � wRÞ ¼ 0. (62)

As shown in Fig. 4, the footing displacement of the sdof system results from the unevenness DwðtÞ and the
displacement of the beam wBðtÞ which depends on the history of the interaction force.

wRðtÞ ¼ wBðtÞ � DwðtÞ ¼

Z t

0

PðtÞhðt� tÞdt� DwðtÞ. (63)

The missing equation can be found from the equation of the vertical dynamic equilibrium for the whole
nonlinear sdof system.

PðtÞ ¼ �mW €wW ¼ c1ð _wW � _wRÞ þ k1ðwW � wRÞ. (64)

Those three equations constitute a system of two differential equations and one equation which contains an
integral, but no derivatives for the three unknowns wW ; wB and PðtÞ. Such a system is called a system of
‘‘retarding differential algebraic equations’’ (RDAE) [43] (the authors are not aware of any publication in
English, in which this information can be found).

RDAE is a class of equations with special, unfavorable numerical properties. Numerical procedures, even
using well established integration schemes as e.g. the Newmark-b method, may lead here to instabilities or
significant erroneous high-frequency effects. These effects have purely numerical origin, i.e. the frequencies are
reciprocally proportional to the time step. Unfortunately, those high-frequency contributions cannot be
removed by choosing smaller time steps. Because it is not possible to go into detail here, it will only be
mentioned that the behavior of the system depends decisively on the so-called system index, which counts the
number or differentiations to be applied to an algebraic or as in this case retarding equation in order to
achieve a pure system of differential equations [43].

For the numerical solution of the given system of nonlinear RDAE for three unknowns there exist two
possibilities: the problem can be solved with or without elimination of the interaction force PðtÞ. First the
procedure by elimination of the interaction force shall be shown. The numerical representation of the
convolution integral can be written as

wRðtÞ ¼

Z t

0

PðtÞhðt� tÞdt� DwðtÞ ! wiþ1
R ¼ whist þ

Dt

4
Piþ1ðh0

þ h1
Þ � Dwiþ1 (65)

with the ‘‘historical contributions’’ of PðtÞ from earlier steps

whist ¼
Dt

4

Xi

k¼1

Pkðhiþ1�kþ1
þ 2hiþ1�k

þ hiþ1�k�1
Þ � Dwiþ1. (66)

This equation easily can be solved for the interaction force PðtÞ:

Piþ1 ¼
wiþ1

R þ Dwiþ1 � whist

Dt=4ðh0
þ h1
Þ

. (67)

Now the interaction force PðtÞ can be eliminated out of the system of equations. Finally, one obtains a system
consisting just of differential equations, therefore the problems of RDAE will not occur.
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Due to the fact that the elimination of the interaction force enforces prior analytical operations, in most
cases particularly with regard to the numerical implementation it is preferable not to eliminate the interaction
force. Then it is essential to reduce the before mentioned RDAE system index. For the system under
consideration this can be achieved by a differentiation of the wheel displacement wRðtÞ given by Eq. (63) with
respect to the time t:

_wRðtÞ ¼

Z t

0

PðtÞ _hðt� tÞdt� D _wðtÞ. (68)

In the frequency domain this corresponds to a multiplication of the system transfer function ~Hðo0Þ by io0:

_hðtÞ ¼
1

2p

Z 1
�1

io0 ~Hðo0Þeio
0t do0. (69)

However, after this multiplication the function that has to be subjected to the IFT does no longer decrease
sufficiently quickly, it attenuates only slowly with increasing circular frequency o. Accordingly, the velocity

_wBðtÞ ¼

Z t

0

PðtÞ _hðt� tÞdtþ PðtÞhð0Þ (70)

shows a singular value at the time t ¼ 0. The reason for this is the only gradually increasing activated mass of
the beam– tunnel– soil system.

In order to overcome the problem of the determination of the ‘‘singular part’’ contribution the following
relations can be used:

1

2p

Z 1
�1

_hðtÞdt ¼
1

2p

Z 1
�1

_hðtÞei0t dt

¼ IFTð _hðtÞÞjo0¼0 ¼ io0 ~Hðo0Þjo0¼0 ¼ 0, ð71Þ

which result in Z 1
�1

_hðtÞdt ¼ 0. (72)

Observing causality one obtains:

Z 1
�1

_hðtÞdt ¼

Z Dt

�1

_hðtÞdtþ

Z 1
Dt

_hðtÞdt ¼

Z Dt

0

_hðtÞdtþ

Z 1
Dt

_hðtÞdt ¼ 0. (73)
fictitious
surface ΓS

d

b

fictitious
layer
interface

pz

rΓs

h

half-space

Fig. 5. Half-space with fictitious layer interface and fictitious surface Gs.
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Taking into account that the impulse response functions hðtÞ ! 0 for t!1, the singular part contribution
can be calculated. Z Dt

0

_hðtÞdt ¼ �

Z 1
Dt

_hðtÞdt ¼ �hð1Þ þ hðDtÞ ¼ hðDtÞ

¼ IFTð ~Hðo0ÞÞjt¼Dt ¼
1

2p

Z 1
�1

~Hðo0Þeio
0Dt do0. ð74Þ

One obtains this contribution as the IFT of the system transfer function ~Hðo0Þ evaluated at the time t ¼ Dt,
which can be used since the interaction force PðtÞ is considered as constant within each time step. Now a
nonlinear procedure as e.g. the Newmark-b method can be applied.
6. Examples

In order to control the functional capability of the presented solution a special situation shall be investigated
which is characterized by its property that it can be solved not only by the presented ITM–FEM coupling, but
also by a simple semi-analytical approach. As shown in Fig. 5 one soil layer with thickness d resting on a half-
space—both modelled with the same soil parameters—with a loading pz (width b) applied at the interface
between the upper layer and the half-space is modelled by the ITM. This situation can also be solved by the
method presented here if the complete FEM domain interior of the fictitious surface Gs is described by the aid
of Finite Elements to which the same material parameters are assigned as to the adjacent soil. Nodes have to
be defined along the fictitious surface Gs as well as along the fictitious interface between the upper layer and
the half-space where the loading pz shall be applied.

Fig. 6 shows the results for the displacements at the surface of the half-space due to a rectangular loading
pz ¼ 0:5MN=m2 with the width b ¼ 5m in transversal and the length l ¼ 5m in longitudinal direction,
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Fig. 6. Displacements at the surface of the half-space; semi-analytical solution for a load acting at the layer interface in the half-space (–)

and the ITM–FEM solutions taking into account n ¼ 3 (� � �), n ¼ 6 (- -) and n ¼ 9 (- �) Fourier series members in circumferential direction,

respectively ðf ¼ 50Hz; h ¼ 10mÞ; the x-axis shows the coordinates x and y, respectively, relative to the wavelength of the Rayleigh wave

lR: (a) t ¼ 0; (b) t ¼ 0.

Table 1

Parameters for the soil

Young’s modulus

E ðNm�2Þ

Poisson’s ratio n
dimensionless

Density

r ðkg=m3Þ

Loss factor z
dimensionless

P-wave speed

vs ðm=sÞ
S-wave speed

vp ðm=sÞ

2000� 106 0.3 2000 0.10 1160 620
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moving with the velocity v ¼ 20m=s and harmonically oscillating with the frequency f ¼ 50Hz. The FEM-
mesh has been created using triangular elements, for the soil the parameters given in Table 1 have been used.
It can be seen that the agreement between the analytical and the FEM solution is very good even if a low
number of Fourier series members in circumferential direction is taken into account.

The presented approach allows to calculate the vibrations at the surface of the half-space due to a train
moving in a tunnel. Since an ITM–FEM coupling is used, it is possible to model tunnels which may have an
Fig. 7. Finite element mesh for a tunnel with rectangular cross-section and mass–spring system.

Fig. 8. Vibrations at the surface of the half-space, tunnel with rectangular cross section ðt ¼ 0Þ: (a) unisolated; (b) isolated ðf 0 ¼ 16HzÞ.
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Fig. 9. Modelling the vehicle as bogie system with rail surface unevenness DwðxÞ.
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arbitrary cross-sectional shape (Fig. 7). The given mass–spring system will be modelled analytically as
described in Section 5.

Fig. 8 shows the displacements at the surface of the half-space due to a load with the amplitude
F0 ¼ 2� 103 N moving in the tunnel with the velocity v ¼ 20m=s. The load is harmonically oscillating
Table 2

Parameters for the vehicle

Distance between axles, m Dl 2:5
Railcar body mass, kg mW 20300

Bogie mass, kg mD 2980

Wheelset mass, kg mR 1760

Stiffness primary suspension (basic value), N/m k0 7:04� 105

Damping ratio primary suspension, Ns/m c1 2:02� 104

Stiffness secondary suspension, N/m k2 19:44� 105

Damping ratio secondary suspension, Ns/m c2 2:38� 104

Bogie moment of inertia, kgm2 Iy 650

Amplitude of the out-of-roundnesses, m A 1:5� 10�5

Table 3

Parameters for the tunnel shell

Young’s modulus

E ðNm�2Þ

Poisson’s ratio n
dimensionless

Density

r ðkg=m3Þ

Loss factor z
dimensionless

Inner radius ri

(m)

Outer radius ro

(m)

30000� 106 0.2 2500 0 3.0 3.15
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Fig. 10. Wheel displacements wR0 ðf R0 ¼ 28Þ and wR1 ðf R1 ¼ 56HzÞ due to wheel out-of-roundnesses with the amplitude A ¼ 1:5e�5m

for the case of the floating slab-track coupled to the tunnel shell embedded in the half-space (–) and for the case of the floating slab-track

on a rigid foundation (� � �). (a) wR0 ðf 0 ¼ 10HzÞ; (b) wR1 ðf 0 ¼ 10HzÞ; (c) wR0 ðf 0 ¼ 100HzÞ; (d) wR1 ðf 0 ¼ 100HzÞ.
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with the frequency f ¼ 50Hz. The displacements are shown at the time t ¼ 0 for the unisolated case
and for the case that the tunnel is equipped with a mass–spring system with the natural frequency
f 0 ¼ 16Hz.
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Fig. 11. Wheel displacements wR0ðf R0 ¼ 21HzÞ and wR1ðf R1 ¼ 28HzÞ due to wheel out-of-roundnesses with the amplitude A ¼ 1:5e�5m

for the case of the floating slab-track coupled to the tunnel shell embedded in the half-space (–) and for the case of the floating slab-track

on a rigid foundation (� � �). (a) wR0 ðf 0 ¼ 10HzÞ; (b) wR1 ðf 0 ¼ 10HzÞ; (c) wR0 ðf 0 ¼ 100HzÞ; (d) wR1 ðf 0 ¼ 100HzÞ.
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Fig. 12. Sampling grid of the system transfer function Hðkx;o0Þ.
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Due to the relatively stiff soil under consideration the influence of the tunnel structure is restricted to the
direct vicinity of the tunnel, after a short distance from the tunnel the excitation of regular Rayleigh waves can
be observed.

In the following the interaction of a vehicle with the coupled structure consisting of the mass–spring system
mounted on a tunnel embedded in the half-space shall be investigated. The vehicle is modelled as a bogie with
5 dof as shown in Fig. 9, its parameters are given in Table 2.

An arbitrary rail surface unevenness now could be taken into account by the procedure described in
Section 5. However, in the following examples two different harmonic wheel out-of-roundnesses are accounted
for instead by applying the same procedure in an analogous manner, since for a linear vehicle in this case an
analytical solution (that may serve as a reference solution) can be obtained. Calculations have been made for
the interaction of the vehicle with a mass–spring system mounted on the tunnel embedded in the half-space
and for comparison resting on a rigid foundation. The parameters for the soil can be found in Table 1 and the
parameters for the tunnel shell are given in Table 3. Figs. 10 and 11 show comparisons of the wheel
displacements of the two wheels due to a moving vehicle ðv ¼ 20m=sÞ with the first and the second wheel
having out-of-roundnesses with the frequencies f ¼ 28Hz and f ¼ 56Hz, respectively, for different natural
frequencies of the floating slab-track system. As expected it can be seen that the influence of the embedded
-1 -0.5 0 0.5 1
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Fig. 13. Detail of the sampling grid of the system transfer function Hðkx;o0Þ with the analytical dispersion curve of an elastically

supported beam resting on a rigid foundation (solid line).
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tunnel compared to the elastically supported beam on rigid foundation is only low for the relatively stiff soil
under consideration and lies within the accuracy of the calculation. For a mass controlled mass–spring system
with the natural frequency f ¼ 10Hz one can see the dominance of the excitation of f ¼ 28Hz at the first
wheel where a contribution of the higher frequency can hardly be seen. At the second wheel which is excited by
f ¼ 56Hz due to the increasing distance of the excitation frequency from the systems frequency the first
wheel’s influence now is clearly visible. For a frequency controlled mass–spring system with the natural
frequency f ¼ 100Hz the results for the complete system slab-track– tunnel– soil are significantly higher than
the results for the elastically supported beam on rigid foundation that can be explained by the lower stiffness
of a series system of two springs and a higher amplification factor with this decreasing stiffness. Here it shall be
recalled that the absolute values of the displacements are shown which include the displacements of the shell.
Due to the fact that now the higher excitation frequency of f ¼ 56Hz at the second wheel is closer to the
systems frequency, its influence on the first wheel now can clearly be seen. At the second wheel in this case
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Fig. 16. Impulse response functions at x̄ ¼ �2:5m (solid line) and at x̄ ¼ þ2:5m (dashed line).
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there is no influence of the lower frequency at all because of its lower amplification factor and the higher
D’Alemberts forces for the higher frequency which increase with the power of two of the frequency o.

Fig. 11 shows similar results as Fig. 10 for different excitation frequencies at the two wheels. At the first
wheel the excitation frequency now is f ¼ 21Hz, the second wheel now has a frequency due to its out-of-
roundness of f ¼ 28Hz. Here the influence from one wheel’s excitation frequency on the answer at the other
wheel is higher due to the fact that the frequencies are closer to each other and the difference in the load as well
as in the amplification function is smaller.

For the case of nonlinear primary springs of the vehicle the calculation of the interaction has to be
performed in the original ðx; tÞ-domain. Therefore the transfer function Hðo0Þ of the complete coupled system
elastically supported plate– tunnel– half-space has to be calculated. Figs. 12 and 13 show the grid of the
adaptive sampling, Fig. 14 shows the system transfer function Hðo0Þ. As a fact of the equally spaced sampling
chosen for this figure the shown function seems to be not smooth. In order to derive the impulse response
function hðtÞ an inverse transform has to be applied to the system transfer function Hðo0Þ. This task has been
performed in a very efficient manner by the use of the wavelet transform as described in Refs. [39,44]. The
impulse response function hðtÞ is given in Fig. 15, the responses at x̄ ¼ �2:5m in the moving coordinate system
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are shown in Fig. 16. Due to the movement of the coordinate system in positive x-direction the amplitude of
the beam displacement attenuates faster in this direction. Therefore in Fig. 16 the displacement at x̄ ¼ �2:5m
is greater than the displacement at x̄ ¼ þ2:5m.

The nonlinear spring characteristic used for the example is given by the function

knl ¼
k0

1þ ajwjn
(75)

with the parameter k0 given in Table 2, a ¼ 2� 105 and n ¼ 0:1. Fig. 17 shows the solution of the nonlinear
calculation for the displacements wB0 and wB1 and the interaction forces F 0 and F 1 at the first and second
wheel, respectively, the displacement wD and the rotation fD of the bogie and the displacement wW of the
coach. The time integration has been carried out applying the Newmark-b method with the parameters
b ¼ 1=4 and g ¼ 1=2 and the time step Dt ¼ 1:5� 10�5. The graphs (d) and (e) of Fig. 17 show the solutions
for the displacements of the wheels, not only calculated by a time step method within the nonlinear procedure,
but also calculated by a linear interaction in the frequency domain. As can be seen the solution obtained in the
original time domain for the nonlinear case differs only slightly from the solution derived in frequency domain
for the linear case. The effect of the nonlinear spring is only marginal.

7. Conclusions

An efficient approach to calculate the dynamic interaction of a moving vehicle with a mass–spring system
mounted on a tunnel by the use of a ITM–FEM coupling has been shown. This is achieved by a combination
of solutions for the uniform half-space and the continuum with cylindrical cavity in order to solve the system
of a half-space with a cylindrical cavity. The tunnel structure and a portion of the surrounding soil is modelled
by FEM in the Fourier transformed ðkx; y; z;oÞ-domain where the coupling to the half-space with cylindrical
cavity is performed. On the basis of those solutions the interaction of the mass–spring system mounted on the
tunnel with a nonlinear vehicle has been shown where attention had to be paid to the problems arising in the
context of RDAE.

Appendix A. Matrices ½L� and ½T� for the calculation of the displacements and the stresses in a half-space

½L� ¼

ikx ikx 0 0 �l2 l2
iky iky l2 �l2 0 0

l1 �l1 �iky �iky ikx ikx

2
64

3
75, (76)

½T � ¼ m

� 2k2
x þ

l
m

k2
p

� �
� 2k2

x þ
l
m

k2
p

� �
0 0 �2ikxl2 2ikxl2

�ð2k2
y þ

l
m k2

pÞ �ð2k2
y þ

l
m k2

pÞ 2ikyl2 �2ikyl2 0 0

ð2k2
r � k2

s Þ ð2k2
r � k2

s Þ �2ikyl2 2ikyl2 2ikxl2 �2ikxl2
�2kxky �2kxky ikxl2 �ikxl2 �ikyl2 ikyl2

2ikyl1 �2ikyl1 l22 þ k2
y l22 þ k2

y �kxky �kxky

2ikxl1 �2ikxl1 kxky kxky �ðl22 þ k2
xÞ �ðl

2
2 þ k2

xÞ

2
6666666666664

3
7777777777775

(77)

with

kr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. (78)

The vector of the unknown coefficients Aj and Bij is given by

½C�T ¼ fA1e
l1z A2e

�l1z Bx1e
l2z Bx2e

�l2z By1e
l2z By2e

�l2zg. (79)
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Appendix B. Matrix Hðr; n;kx; v;oÞ for the fundamental solution consisting of Hankel functions of the 1st
kind H ð1Þn and Hankel functions of the 2nd kind H ð2Þn

B.1. Elements of H used to determine the displacement components ur of the continuum in Eq. (30)

H11 ¼
n

r
H ð1Þn ðakxrÞ � akxH

ð1Þ
nþ1ðakxrÞ,

H12 ¼ kxH
ð1Þ
n�1ðbkxrÞ,

H13 ¼ �kxH
ð1Þ
nþ1ðbkxrÞ,

H14 ¼
n

r
H ð2Þn ðakxrÞ � akxH

ð2Þ
nþ1ðakxrÞ,

H15 ¼ kxH
ð2Þ
n�1ðbkxrÞ,

H16 ¼ �kxH
ð2Þ
nþ1ðbkxrÞ.

B.2. Elements of H used to determine the displacement components uf of the continuum in Eq. (30)

H21 ¼ i
n

r
H ð1Þn ðakxrÞ,

H22 ¼ ikxH
ð1Þ
n�1ðbkxrÞ,

H23 ¼ ikxH
ð1Þ
nþ1ðbkxrÞ,

H24 ¼ i
n

r
H ð2Þn ðakxrÞ,

H25 ¼ ikxH
ð2Þ
n�1ðbkxrÞ,

H26 ¼ ikxH
ð2Þ
nþ1ðbkxrÞ.

B.3. Elements of H used to determine the displacement components ux of the continuum in Eq. (30)

H31 ¼ ikxH ð1Þn ðkxarÞ,

H32 ¼ �ibkxH ð1Þn ðbkxrÞ,

H33 ¼ �ibkxH ð1Þn ðbkxrÞ,

H34 ¼ ikxH ð2Þn ðakxrÞ,

H35 ¼ �ibkxH ð2Þn ðbkxrÞ,

H36 ¼ �ibkxH ð2Þn ðbkxrÞ.
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B.4. Elements of H used to determine the stress components srr=2m of the continuum in Eq. (30)

H41 ¼
1

r2
nðn� 1Þ � k2

xr2 a2 þ ða2 þ 1Þ
l
2m

� �� �
H ð1Þn ðakxrÞ þ

akx

r
H
ð1Þ
nþ1ðakxrÞ,

H42 ¼
kx

r
ðn� 1ÞH

ð1Þ
n�1ðbkxrÞ � bk2

xH ð1Þn ðbkxrÞ,

H43 ¼
kx

r
ðnþ 1ÞH

ð1Þ
nþ1ðbkxrÞ � bk2

xH ð1Þn ðbkxrÞ,

H44 ¼
1

r2
nðn� 1Þ � k2

xr2 a2 þ ða2 þ 1Þ
l
2m

� �� �
H ð2Þn ðakxrÞ þ

akx

r
H
ð2Þ
nþ1ðakxrÞ,

H45 ¼
kx

r
ðn� 1ÞH

ð2Þ
n�1ðbkxrÞ � bk2

xH ð2Þn ðbkxrÞ,

H46 ¼
kx

r
ðnþ 1ÞH

ð2Þ
nþ1ðbkxrÞ � bk2

xH ð2Þn ðbkxrÞ.
B.5. Elements of H used to determine the stress components sff=2m of the continuum in Eq. (30)
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B.6. Elements of H used to determine the stress components sxx=2m of the continuum in Eq. (30)

H61 ¼ �k2
x ða

2 þ 1Þ
l
2m
þ 1

� �
H ð1Þn ðakxrÞ,

H62 ¼ bk2
xH ð1Þn ðbkxrÞ,

H63 ¼ bk2
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H64 ¼ �k2
x ða

2 þ 1Þ
l
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� �
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B.7. Elements of H used to determine the stress components srf=2m of the continuum in Eq. (30)
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B.8. Elements of H used to determine the stress components srx=2m of the continuum in Eq. (30)
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2
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n

r
H ð2Þn ðbkxrÞ

h i
,

H86 ¼
i

2
�bkx

n

r
H ð2Þn ðbkxrÞ þ k2

xðb
2
� 1ÞH

ð2Þ
nþ1ðbkxrÞ

h i
.
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B.9. Elements of H used to determine the stress components sfx=2m of the continuum in Eq. (30)

H91 ¼ �kx

n

r
H ð1Þn ðakxrÞ,

H92 ¼
1

2
�k2

xH
ð1Þ
n�1ðbkxrÞ þ bkx

n

r
H ð1Þn ðbkxrÞ

h i
,

H93 ¼
1

2
bkx

n

r
H ð1Þn ðbkxrÞ � k2

xH
ð1Þ
nþ1ðbkxrÞ

h i
,

H94 ¼ �kx

n

r
H ð2Þn ðakxrÞ,

H95 ¼
1

2
�k2

xH
ð2Þ
n�1ðbkxrÞ þ bkx

n

r
H ð2Þn ðbkxrÞ

h i
,

H96 ¼
1

2
bkx

n

r
H ð2Þn ðbkxrÞ � k2

xH
ð2Þ
nþ1ðbkxrÞ

h i
.
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